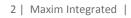
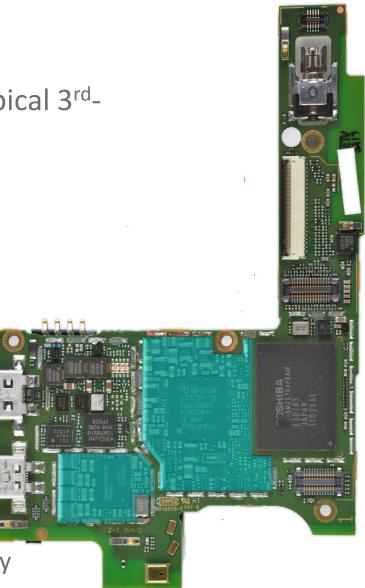


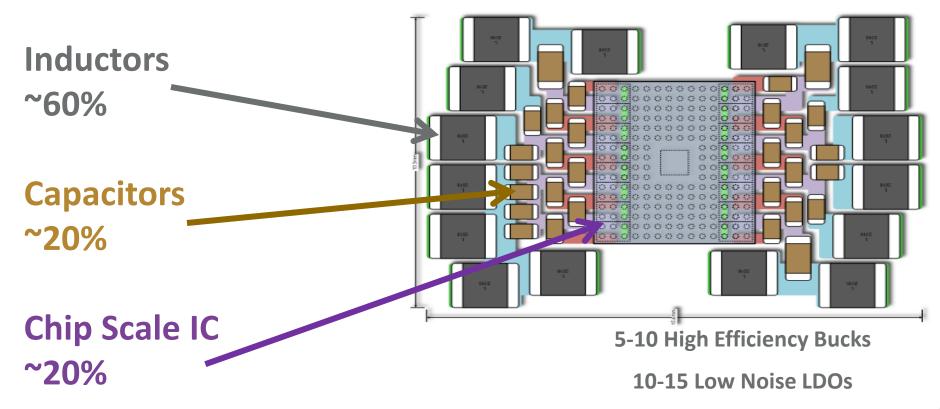
Benefits of Stacked-Wafer Capacitors for High-Frequency Buck Converters


Michael W. Baker, PhD


Maxim Integrated

Power SoC Northeastern University, Boston MA. October 7, 2014

Mobile Device Trends


- Power Management occupies 30% of a typical 3rd-Generation Smartphone
- Many power supplies required today:
 - > Battery charger
 - > Fuel gauge
 - > Touch interface
 - > Backlight power
- More will be required in the future:
 - > Higher number of cores
 - > More discrete sensor modules and functionality
 - > Diverse radios and modes
 - > Wearable and medical technologies

Mobile Power Conversion PCB Area:

- → Many rails are required to provide optimal power for each load.
- → Majority of the area is occupied by passive components which don't shrink with Silicon process node.
- → Typically we would shrink passive components by increasing switching frequency, but resulting efficiency penalty is unacceptable.

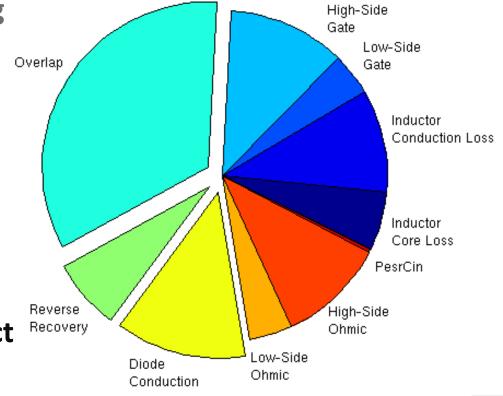
5-port Battery Charger

Low Noise PA Buck

Flash Memory Buck

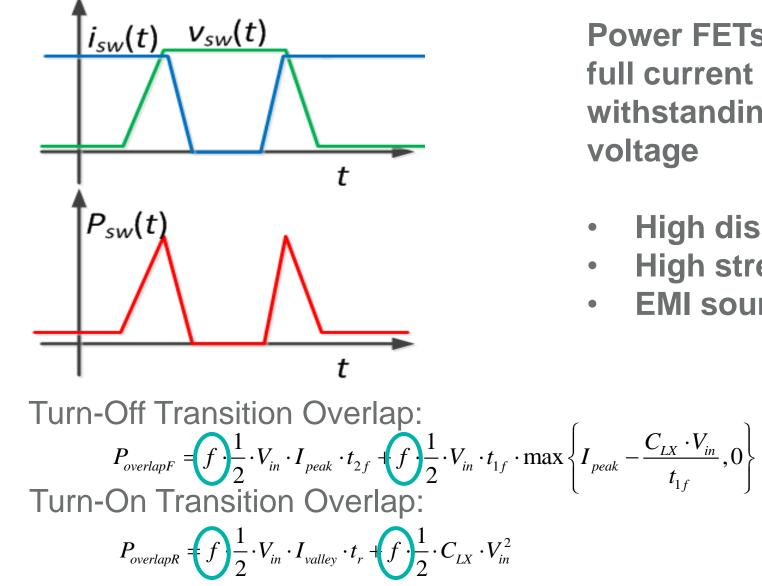
5-10A CPU Buck

Backlight Power


integrated

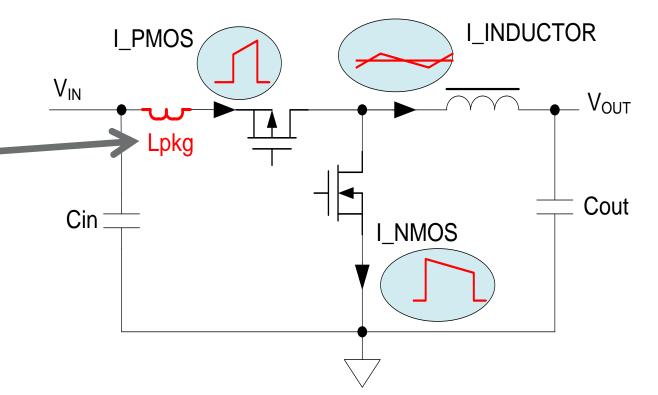
Optimized Buck Converter Losses

Power Loss Contributors Growing with Frequency:

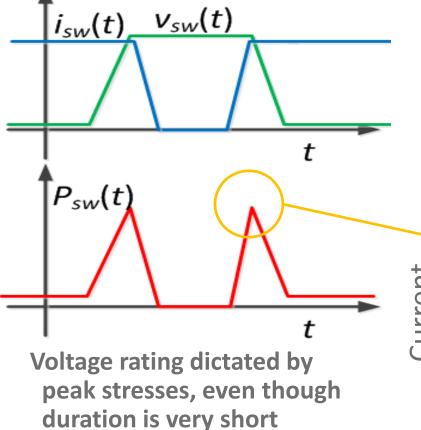

- Turn-On and Turn-Off
 Commutation "Overlap"
- Reverse Recovery
- Body Diode Conduction
- Gate charge CV²

→ Focus on reducing interconnect parasitics to enable higher frequency operation while minimizing efficiency penalties.

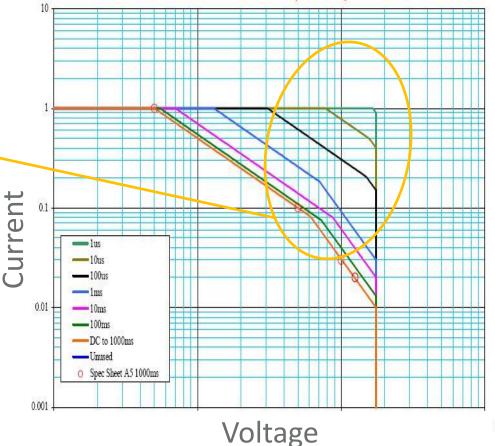
Turn-On and Turn-Off Commutation "Overlap"


Power FETs carry full current while withstanding full voltage

- **High dissipation**
- **High stress**
- **EMI** source

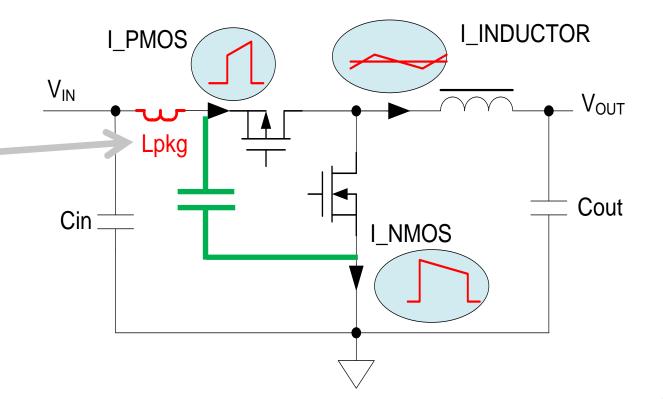

Buck Converter – Input Loop Parasitic Inductance

Fast edge rates of input current passing through package – inductance lead to ringing, EMI, and additional FET voltage stress.



Turn-On and Turn-Off Commutation – Safe Operating Area

Typical SOA Family of Curves for a Power MOSFET

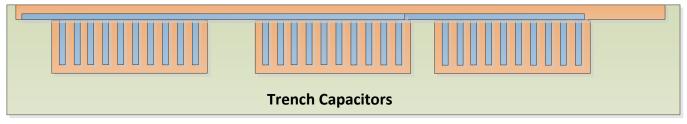


In practice, required design margin is 30-50%

Turn-On and Turn-Off Commutation – Integrated Capacitor

Fast edge rates of input current passing through package – inductance lead to ringing, EMI, and additional FET voltage stress.

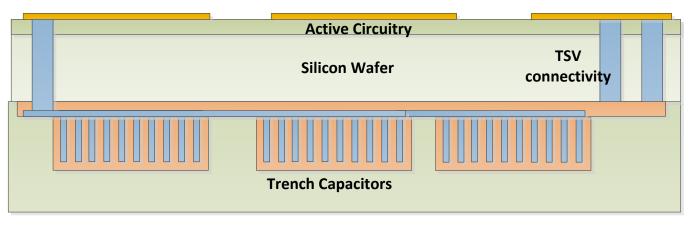
On-chip Cin can reduce parasitic inductance and SOA stress, allow faster commutation, increase efficiency.



On-Chip Input Capacitor - Candidates

Capacitor Type	Structure	Density at 5V (90nm)	Parasitic ESL
MOM CAP	Metal fringing capacitance	0.1-0.2 fF / μm²	< 100pH
MOS CAP	MOSFET Gate Oxide	1-2 fF / μm²	< 100pH
MIM CAP	Dedicated metal- insulator-metal sandwich	1-2 fF / μm²	< 100pH
Full Stack	MOS + MIM + 4 x MOM	2.5 - 5 fF / μm²	< 100pH
Discrete Chip Capacitor	eMGA package, low profile	0.5uF 0402 = 1μF / mm ² 1000fF / μm ²	~500pH
Discrete Chip Capacitor	On PCB, 1mm height	1uF 0402 = 2μF / mm ² 2000fF / μm ²	~1-2nH

Trench Capacitor Technology


Not to scale

 Wafer-scale Silicon Trench Capacitor Technology: 600 fF/μm² @ 5.5 MOV, TDDB 10 year; V_{BD} 19V, 1000fF/μm² @ 3.3 MOV, TDDB 10 year; V_{BD} 11V,

Arkadii V. Samoilov, et. al, "3D Heterogeneous Integration for Analog", IEEE. 2013.

Wafer-scale Integration

Not to scale

- Wafer-wafer bonding + TSV connectivity between die
- Reduces interconnect inductance by up to 10x compared to traditional PCB.

On-Chip Input Capacitor - Candidates

Capacitor Type	Structure	Density at 5V (90nm)	Parasitic ESL
MOM CAP	Metal fringing capacitance	0.1-0.2 fF / um ²	< 100pH
MOS CAP	MOSFET Gate Oxide	1-2 fF / um ²	< 100pH
MIM CAP	Dedicated metal- insulator-metal sandwich	1-2 fF / um ²	< 100pH
Full Stack	MOS + MIM + 4 x MOM	2.5 - 5 fF / um ²	< 100pH
Trench capacitor with TSV integration	Deep Reactive-Ion Etched	600fF / um ²	~100pH
Discrete Chip Capacitor	eMGA package, low profile	0.5uF 0402 = 1uF/mm ² 1000 fF/um ²	~500pH
Discrete Chip Capacitor	On PCB, 1mm height	1uF 0402 = 2uF / mm ² 2000 fF/um ²	~1-2nH

Integrated Capacitor Benefits #1: Higher Input Voltage

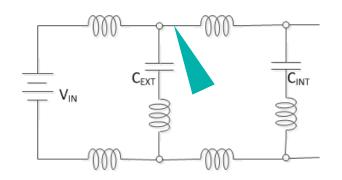
Maximum operating voltage for various input bypass capacitor configurations

External C	Internal C	Max V _{IN}	
1uF	OuF	6.6V	Nominal Design – external C _{IN} .
22uF	OuF	6.7V	Increasing C _{IN} does not help!
0.5 uF	0.5 uF	7.6V	After moving half of the C _{IN} inside.
OuF	0.5uF	7.4V	Less C _{IN} is required when integrated.

20% Increase in voltage headroom can enable device FOM improvement by 40%.

Integrated Capacitor Benefit #2: Higher Output Current

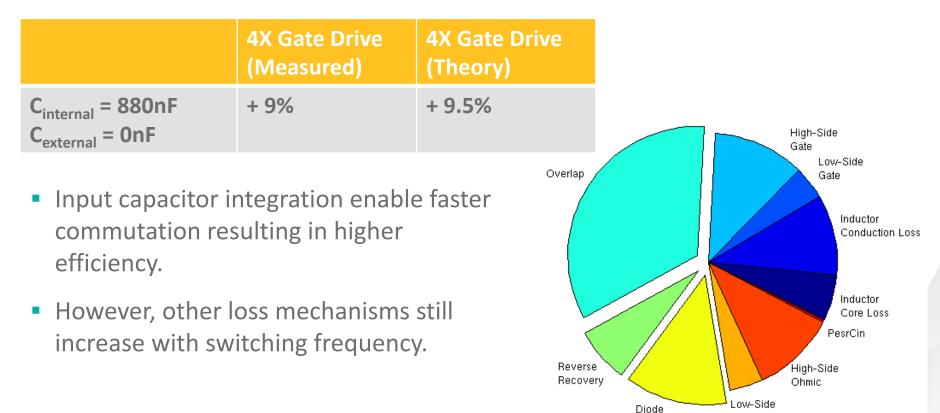
Maximum output current for various input bypass capacitor configurations


External C	Internal C	Max I _{out}	
1uF	OuF	350mA	Nominal Design – external C _{IN} .
0.5 uF	0.5 uF	550mA	After moving half of the C _{IN} inside.
OuF	1.0uF	900mA	More <i>I_{out}</i> is possible when <i>C_{IN}</i> is integrated.

Integrated Capacitor Benefit #3: Lower EMI

Conducted EMI performance for various input bypass capacitor configurations

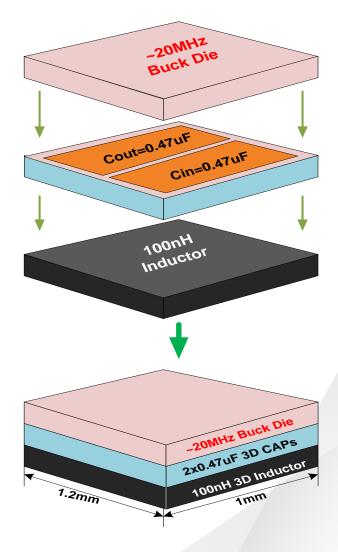
External C	Internal C	EMI at 4*Fsw	EMI at 8*Fsw	Relative P _{TOTAL} (BW=500MHz)	
1 uF	0 uF	4.8 mV	2.7 mV	1	Nominal Design – external C _{IN} .
0.5 uF	0.5 uF	1.6 mV	0.8 mV	0.12	Lowest EMI by partitioning C _{IN} .
0 uF	1.0 uF	2.9 mV	1.3 mV	0.43	Moving <i>C_{IN}</i> inside improves EMI.



 Partitioning C_{IN} creates a higherorder Pi-network effect – 4th order roll-off.

Integrated Capacitor Benefit #4: Minimal Frequency Impact (!)

Switching frequency increase enabled by integrated C_{IN} , for constant efficiency.


Ohmic

ntegrated ...

Conduction

Summary

- Integrated capacitors can improve DC-DC converter performance:
 - > 20% higher input voltage capability
 - > Increased output current capability (lower supply noise)
 - > Reduced conducted EMI
- Demonstrated a low-ESL, high-density capacitor technology.
- Next Steps:
 - > Address additional switching losses with new topologies and control.
 - > Integrated inductors...

Acknowledgements

Colleagues at Maxim

- Khanh Tran
- Larry Wang
- Cory Arnold
- Arkadii Samoilov
- Brett Miwa
- Joseph Ellul

Thank You!

